
Dr. Edgar Huckert

11-2017 V1.2

Web: www.huckert.com

Controlling a Rasberry 3 based audio player via 433MHZ

Overview

I am an (advanced) amateur musician playing from time to time on a stage in
a large auditorium on saxophone or clarinet. I use as accompagniment „play
along“ music that I prepare myself.

My problem is: I cannot control directly the mixing console (loudness, more
basses, pan adjustment) as it stands 20 m away from me. I tried therefor to
control the mixing control (in fact: only my input to this console) by using a
PC (here called frontend or client) standing near to me and an Raspberry 3
(here called backend or server) connected to the mixing console by short
audio cable. Between the PC and the Rasberry 3 commands are exchanged via
a 433Mhz wireless connection.

I have written three solution versions for the given problem:

• a version based on WIFI/WLAN
• a version based on Bluetooth
• this version based on 433MHz communication

From these 3 versions I largely prefer the last one which uses two 433 MHz
modules called "HC-12". These modules cost around 10 Euro per module. I
have also tested other 433MHz modules: they are crap compared with the HC-
12 modules. The advantages of the 433Mhz solution:

• very good distance coverage (I reached >100m).
• very uncomplicated setup (compared with Bluetooth)
• no WLAN/WIFI needed (not available in this auditorium)

I am able to control in real time the functions that seem important to me:

• start songs
• stop songs if necessary
• control the loudness of the „play along“ music

1

I have written a very simple graphical interface (GUI) for a PC running
under Windows or Linux/GTK. It was essential for me that this interface was
as simple as possible as you have no time to issue complicated commands if
you stand on a stage playing rather complicated music (in my case Jazz). The
interface therefore only has some simple buttons for manipulating the remote
player.

The frontend (PC side, TX)

The frontend is a PC based client. This is a graphical user interface (GUI)
consisting mainly of large buttons enabling the start of songs (actually 9 song),
the control of the loudness (4 buttons) and a STOP button to cancel the actual
player process.

The frontend communicates with the backend by sending very simple ASCII
based messages. You will see the frontend below under the chapter „The real
scenario“. When we mix software and hardware components the the frontend
consists of:

• GUI software written in C++ with wxWidgetsI
• USB-serial driver for the Arduino
• Arduino 5V version (I used Arduino Nano)
• simple Arduino sketch
• HC-12 module 433MHZ (used as transmitter)

The pure GUI component is portable as it uses standard C++ with
wxWidgets (Versions >= 3.0). You may build and run the frontend software
(GUI) under Windows or Linux/GTK. The functions for the serial communication
over 433Mhz are however not so portable: I have put the respective versions
between #ifdef WIN32- #else brackets. Keep in mind that the GUI client has
also a very technical part: it must handle the HC-12 module acting as a
transmitter.

The windows dimensions are calculated at start time – may be that this logic is
a bit too simple. My goals was to get large buttons that can easily be manipu-
lated on stage. A touch screen would even have been better – I don't own one.

You will find the GUI source code, a simple ini file and a make file in the ZIP
file mentioned below. I used Mingw g++ on Windows and GNU g++ on Linux
as compiler and linker. You may have to change some details in the make
files. Make files for projects including wxWidgets are not trivial: so don't
expect to compile the GUI component via a simple CLI command.

Do not forget to enter the correct serial device names (Linux) or COM numbers
in the ini-file 433MhzGUI.ini. Under Linux this should be somethin like

2

„/dev/ttyUSB0“ and under Windows just „3“ oder „20“. While testing I have
seen a lot of variation for the COM ports: from COM3 to COM20.

A note for the Arduino to be used on the client side: I used an Arduino Nano.
On one of my Windows 7 machines I had problems with the driver for the
USB-serial port: It seems that the orginal Arduino Nano uses an FTDI chip
whereas many clones use other chips like CH340 in my case (I even didn't
know that my Arduino was a clone). I could solve the driver problem by
installing the driver CH341SER on the Windows PC. On Linux/GTK the device
/dev/ttyUSB0 mad no problems for the frontend.

A really short Arduino sketch named PlayerFront.ino is in the ZIP file. This
sketch just accepts bytes from the USB-serial port and forwards them to the
HC-12 module that is wired with the Arduino. The Arduino program is more or
less a simple echo program: it just reads bytes from the serial line and
forwards them to the HC-12 transmitter. The Arduino is needed as you cannot
normally manipulate directly pins on a PC!

It is important the the frontend HC-12 has only the TX-pin connected to the RX
pin of the Arduino. The RX pin must not be connected - it is used by the
USB/serial driver internally.

The backend (Raspberry 3 side, RX)

The server must be an interface for the receiver module HC-12. I have con-
nected this module directly to the pins of my Raspberry 3 so that no USB
driver is needed, just the standard serial device /dev/ttyS0. The receiver
side is thus simpler that the transmitter side.

The server software consists mainly of a server program receiving messages
from the client. I have written a program called 433Mhz_server in standard C.
After having received a message it starts a WAVE player process (called
playw), stops a player process or controls the loudness of the player using the
ALSA standard command amixer. Unfortunately this command is badly docu-
mented. On my Linux machines each amixer version shows different behaviour.
Be prepared to modify the amixer calls in the code if necessary. If the vol- or
vol+ buttons don't work as expected make you own experiences with the
amixer ALSA program. We need in the backend just ALSA – no Pulseaudio nor
Jack needed!

If we mix again software and hardware components then the backend consist
of:

3

• a Raspberry V3
• serial driver (normally /dev/ttyS0) - no USB needed
• server program 433Mhz_server
• player program playw
• HC-12 module 433MHZ (used as receiver)
• standard ALSA program amixer

Note that I don't recommand a Raspberry 2: the audio module is worse that on
the Raspberrry 3.

One of the bigger problems were the STOP commands: I had to manipulate the
process list in order to find the actual player processes that were to be killed.

The player used in this backend is my own program playw (the source is
included). If you don't like this program you can also use standard ALSA
commands like aplay. The player is alway started as a separate background
process – it is not tightly coupled with the backend program 433Mhz_server.

You will find the server source code and a make-file in the ZIP file mentioned
below. I used Mingw g++ as compiler and linker.

I include a diagram describing the structure of frontend and backend:

4

Note that the frontend and backend sides are asymmetric:The frontend uses
an Arduino (in my case an Arduino Nano) to control the HC-12 module (the
transmitter). A USB/serial driver as used in normal Arduino IDE installations is
used as link between the PC and the Arduino. This driver controls a COM port:
in my case "COM3:" - but may be called differently depending on the Arduino
versions and the Windows versions.

The backend needs no Arduino: the Raspberry 3 can control the HC-12
module (the receiver) directly - there is even no USB needed as the serial
/dev/ttyS0 driver can control the HC-12 module directly.

Testing the communication

Before using the real frontend - the GUI application - and the real backend -
the audio player - we can test the basic communication by using:

• a terminal emulation like TeraTerm under Windows(used as sender) on
the PC side or Putty under Windows or Linux

• a terminal emulation like minicom (used as receiver) on the Raspberry
3 side

Both sides should be configured with 9600/n/1. This can be done in the
terminal emulation program or with this command:

 sudo stty -F /dev/ttyS0 9600 raw

On the Rasberry 3 side you should test if a getty process (a login process) is
running on /dev/ttyS0. This getty process can seriously disturb the reception of
commands on the Raspberry side. Proceed as follows under Raspian V8.0:

 ps ax | grep getty

If getty or agetty is shown in the result then:

 sudo systemctl stop serial-getty@ttyS0.service
sudo systemctl disable serial-getty@ttyS0.service

These commands stop and disable the getty or agetty processe only for the
current session. The processes will reappear on the next boot. I have placed
these commands in a short procedure called stopGetty.

The following screen shot shows my communication test scenario: the upper
„black“ window shows a Putty screen running minicom on the Raspberry 3, the
lower black window shows TeraTerm running on a Windows PC:

5

Not much surprise here: the input on the lower window is echoed on the upper
window.

Testing the backend

We can now test the backend audio server. This is program 433Mhz_server.c
running on the Raspberry 3. If we are sure that no getty process is running on
our serial line and after configuring this line for 9600/n/1 we start the backend
process on the command line if by typing

sudo ./433Mhz_server -v

6

In a real context we would rather start this audio server in the background
(appending a „&“ to the command) or start it at boot time via systemd or via
crontab.The „-v“ parameter ensures that you see something on the Raspberry
side as soon as a command arrives.

On the frontend side (PC) TeraTerm (Windows) or Putty (Windows or Linux)
are good to send commands. Please remember that our backend expects
commands terminated by LF ('\n'). If you want to send the name of a WAVE
file to be played then the commands are identical to the names of the WAVE
files (here W1..W9). Be sure that you have configured you terminal emulation
accordingly or enter explict linefeeds after each command string (CTL-J will
normally do the job).

After having placed some WAVE files in the Wave directory you can enter
commands in the terminal emulation of the frontend side. The commands
accepted can be something like the following:

W1 [means: play file W1.wav in the Wave directory]
STOP [means: stop the current Wave file]
+ [means: play it louder]
- [means: lower the volume]

The real frontend (the GUI explained below) will do nothing else than issuing
these commands. It is easy to expand the command set on the server side. But
do not forget that the client side (GUI) must also be expanded – which is not
so easy.

You should start tests on the backend only if the ALSA architecture including
the development package on the Raspberry 3 is installed and working. Com-
mands like aplay provide the base for the most basic tests. If aplay produces
no sound then the more complicated tests will fail also.

The real scenario

7

The following screen dump shows the GUI client (program 433MhzGUI) running

on a Windows Laptop in the upper window. The output from the server pro-
gram 433Mhz_server on my Raspberry 3 is shown in the lower black window.
This output is produced by Putty connecting via WLAN the PC and the Rasp-
berry 3. Putty is used just to demonstrate the arrival of messages in the
backend. You don't need a WLAN connection nor Putty – the server can run
without this.

Be sure that to start it on the Raspberry 3 with root rights or change perma-
nently the access rights for the serial line (in my case /dev/ttyS0).

The procedure stopGetty that can be seen in the first line of the Putty windows
disables an eventual agetty process running on this serial line. It also con-
figures the serial line for 9600 Baud, no parity, 1 stop bit. stopGetty contains
the commands mentioned under „Testing the communication“.

Preparing the Raspberry

On the Raspberry 3 side I don't use an ini-file. Some configuration must there-
fore be done in the source code 433Mhz_server.c:

• change the device name (standard is /dev/ttyS0)

8

• change the directory for the executable (see exe_dir)

• change the directory for the WAVE file (see wave_dir)

• change the name of the player command (see play_cmd)

Don't forget to compile the program 433Mhz_server.c after having changed the
parameters.

It is very important for this simple solution to place all WAVE files (or MP3 if
you use a different player) in the same directory.

Note that the names of the WAVE files correspond to the button names in
the GUI. If you want to use more elaborate WAVE file names then you have to
introduce an indirection level on the server side (a mapping table) or on the
GUI side.

If you change the name of the player command then the STOP logic must
also be changed: the backend program inspects the process table in order to
find the player process by name.

If you have tested the 433Mhz_server manually and if everything works fine
then you can add enrties to file /etc/crontab in order to start the backend at
boot time. In my case I added two lines lines at the end of /etc/crontab:

@reboot huckert amixer -c 0 sset PCM 92%

@reboot root /home/huckert/bin/433Mhz_server -v >/tmp/433Mhz.txt &

The first line presets the volume of Alsa device PCM on channel 0 to 92% (this
may change depending on the Linux and Alsa variants) and the second line
starts a background process for the backend 433Mhz_server.

Wiring

Connections Raspberry 3 GPIO to HC-12 (Backend):

 2 - 1 (5V)
 6 - 2 (GND)
 8 - 3 (RX)
10 - 4 (TX)

Connections Arduino Nano to HC-12 (Frontend):

 27 - 1 (5V)
 29 - 2 (GND)
 1 - 3 (RX)

9

Download links for Windows and Linux/GTK:

You will find the source code for frontend and backend, the Arduino sketch, a
make file for the GUI and even a Win32 executable under this link for
Windows: www.huckert.com/ehuckert/programs/433MhzEH.zip

The version for Linux/GTK under
www.huckert.com/ehuckert/programs/433MhzEHUnx.zip is more or less the
same, except for the executable: as Linux runs on many very different CPUs a
pre-built executable would not be helpful. The ZIP file offers a make file for
Linux/GTK and a C++ source that is slightly adapted for the GUI. The server
part is identical to the Windows ZIP above.

10

http://www.huckert.com/ehuckert/programs/433MhzEH.zip
http://www.huckert.com/ehuckert/programs/433MhzEH.zip

	Controlling a Rasberry 3 based audio player via 433MHZ
	Overview
	The frontend (PC side, TX)
	The backend (Raspberry 3 side, RX)
	Testing the communication
	Testing the backend
	The real scenario
	Preparing the Raspberry
	Wiring
	Download links for Windows and Linux/GTK:

